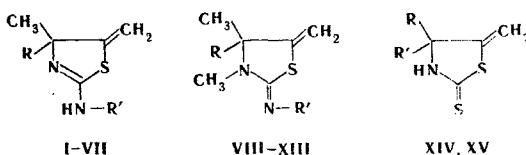


MASS-SPECTROSCOPIC STUDY OF 2-AMINOTHIAZOLINE DERIVATIVES


A. E. Lyuts, V. V. Zamkova,
I. N. Azerbaev,* and L. A. Tsoi

UDC 547.789:543.51

The mass spectra of 15 derivatives of 2-aminothiazoline are presented. The dependence of the intensity of the molecular ion on the substituents in the 4 and 2 positions and the intensive decomposition processes at the C₄ atom make it possible to assume primary localization of the charge on the ring nitrogen atom.

Convincing proof of the effect of charge localization on the fragmentation of molecules under electron impact is presented in the scientific literature [1, 2]. A comparison of the intensities of the peaks of the fragment ions formed from different parts of the molecule to a certain degree makes it possible to form a judgment regarding the probability of charge localization in the molecular ion in the vicinity of various functional groups and regarding their contribution to the overall picture of the fragmentation. In this sense, a study of the spectra of 2-aminothiazolines with functional substituents seems of interest.

In the present research we investigated the mass spectra of 15 compounds with the following structures:

The intensities of the twenty most intense peaks in each mass spectrum are presented in Table 1. An intense molecular ion peak (M⁺), the intensity of which falls as the length of the substituent in the 4 position of the ring increases (compare III and IV, VIII and IX, and X and XI), was observed in the mass spectra of most of the compounds. Replacement of C₂H₅ by C₃H₇ attached to the exocyclic nitrogen atom has almost no effect on the intensity of the molecular ion in compounds with an imino structure (compare VIII and X and IX and XI), whereas the intensity of the M⁺ ions increases in compounds with an amino structure (compare I and II). On passing from amino compounds to thiocarbonyl compounds, the intensity of the molecular ion peak increases.

The fragmentation of the investigated compounds is very specific. Detachment of the 4-alkyl substituent in the β position relative to the N₍₃₎ atom, the so-called α fragmentation (see scheme below), is characteristic for all of the compounds. We note that in the mass spectrum of 2-aminothiazoline [3] there is an intense (M - 1)⁺ peak, which Klayman and Milue explained by detachment of a hydrogen atom from the C₍₅₎ atom, i.e., of a hydrogen atom in the β position relative to the sulfur atom [3]. However, this fragmentation is not characteristic for saturated sulfur compounds [2]. At the same time, an intense (M - 1)⁺ ion is present in the mass spectra of aliphatic and cyclic amines. This convinces us that detachment of a hydrogen atom from the C₍₄₎ atom occurs in the case of unsubstituted 2-aminothiazoline, i.e., that there is intensive α fragmentation with respect to the ring nitrogen.

*Deceased.

Institute of Chemical Sciences, Academy of Sciences of the Kazakh SSR, Alma-Ata. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 179-182, February, 1976. Original article submitted July 19, 1974; revision submitted July 11, 1975.

TABLE I. Mass Spectra of Thiazolines

Com- ound	R	R'	Mass spectra: [*] m/e I, %										
			1	2	3	4				5			
I	CH ₃	C ₂ H ₅	170 8,9 67 5,8 44 4,6 45 8,5	156 9,1 60 4,6 43 10,5 42 12,0	155 100 59 8,6 41 12,0 41 17,9	100 19,0 58 11,4 41 11,0 39 11,0	85 27,3 56 4,5 39 11,0 4,0 71	83 12,7 55 55 55 53 4,3 5,9	71 53 53 4,3 4,0 45 6,0				
II	CH ₃	C ₆ H ₇	182 35,0 83 18,7 45 8,5	169 5,2 67 11,6 42 12,0	168 10,0 59 12,7 41 61,6	167 100 58 17,0 40 7,1	100 15,8 56 11,0 39 32,0	99 7,4 55 7,2 55 101	85 39,6 54 4,2 54 100	85 53 53 8,2			
III	CH ₃	C ₆ H ₅	218 28,0 91 8,0 50 5,0	204 14,0 85 35,0 45 9,0	203 100 77 22,0 42 11,0	119 9,0 67 10,0 41 21,0	118 20,0 65 9,0 39 18,0	101 5,5 59 11,0 39 100	100 21,0 58 12,0 17,0	100 51			
IV	C ₆ H ₇	C ₆ H ₅	246 10,0 85 5,0 45 6,4	231 6,6 77 16,7 43 5,3	203 100 65 6,3 42 10,6	118 6,2 59 8,3 41 17,9	100 18,9 58 6,3 39 11,2	93 9,5 55 4,6 55 91	93 4,5 53 5,4 53 91	91 51			
V	C ₂ H ₅	CH ₂ C ₆ H ₅	246 0,8 89 3,6 53 2,0	231 2,1 77 2,1 51 6,1	218 6,0 65 15,1 50 3,2	217 46,3 63 4,8 45 2,4	92 7,6 59 2,2 41 5,0	91 100 58 4,3 39 10,4	91 100 55 3,2	90 2,8			
VI	C ₂ H ₅	COC ₆ H ₅	260 1,0 100 6,5 58 4,5	232 8,2 99 12,0 55 4,4	231 56,3 85 6,5 53 5,5	114 8,8 81 5,0 51 21,4	113 5,1 78 5,0 50 6,6	106 7,3 77 60,3 45 8,6	106 100 41	105 100			
VII	†	CH ₂ C ₆ H ₅	272 40,7 106 11,5 58 5,9	244 7,6 92 10,0 55 9,4	229 22,4 91 100 53 7,0	217 9,4 81 7,0 51 8,0	181 9,4 79 9,1 44 16,0	110 8,9 77 9,8 41 13,8	110 8,9 65 16,0 39 13,0				
VIII	CH ₃	C ₂ H ₅	184 58,0 85 46,0 57 14,7	170 9,9 83 7,5 56 22,7	169 100 77 11,8 55 7,6	114 57,2 69 14,1 44 9,4	100 8,0 67 8,8 42 12,0	99 7,7 59 7,5 41 14,0	99 7,7 58 7,0 39 8,7				
IX	C ₂ H ₅	C ₂ H ₅	198 14,4 113 5,4 56 29,5	183 11,3 85 9,8 55 12,2	170 10,5 77 5,4 53 10,2	169 100 74 5,3 42 19,4	128 8,3 69 9,7 41 16,5	114 67,3 58 11,8 39 10,4	114 67,3 58 9,7				
X	CH ₃	C ₆ H ₅	196 49,6 69 19,0 53 15,0	181 71,4 68 20,3 45 15,5	168 26,7 67 21,9 42 29,9	114 69,9 59 13,9 41 100	100 20,3 58 14,6 39 55,0	99 14,9 57 16,7 114 85	99 14,9 57 16,7 114 85	85 52,2 56 74,7 55 13,8			
XI	C ₂ H ₅	C ₆ H ₅	210 12,0 81 6,7 45 6,9	183 8,2 70 6,4 41 16,7	182 11,6 69 8,5 37,4	181 100 67 9,3 39 20,3	128 7,0 59 6,8 114 85	114 64,8 58 9,3 85 6,2	114 64,8 58 9,3 85 6,2				
XII	CH ₃	C ₆ H ₅	232 100 103 37,1 58 22,7	231 22,7 91 11,9 56 55,6	217 68,3 86 24,5 51 25,5	133 10,1 85 44,0 42 14,3	132 45,5 77 44,0 41 24,1	114 86,5 65 11,5 39 22,7	114 86,5 65 11,5 39 106	106 36,4 59 10,5 36,0 9,8			

TABLE 1 (continued)

1	2	3	4							
XIII	CH ₃	COC ₆ H ₅	260 27,3 83 6,2 51 25,9	246 4,0 78 5,0 50 6,6	245 25,0 77 61,8 42 5,6	183 13,7 76 4,2 41 10,5	106 8,0 67 4,5 39 8,0	105 100 59 3,9 3,5 85	8,3 58 3,5 22,5 56	
XIV	CH ₃	C ₂ H ₅	173 89,0 99 18,4 53 13,6	146 9,4 85 36,3 52 8,8	145 8,2 81 15,0 51 8,8	144 100 80 8,0 45 17,0	141 9,5 59 26,0 42 30,0	114 8,0 58 26,1 41 38,0	113 11,4 55 12,6 39 25,0	
XV	-(CH ₂) ₅		199 100 97 23,8 58 20,6	156 24,0 91 23,8 53 20,0	125 12,6 81 15,9 51 11,8	112 10,6 79 36,7 45 17,1	111 17,9 77 17,7 41 33,3	107 41,4 67 23,6 39 34,9	98 11,9 59 27,9	

*Of the 20 most intense bands [the (M + 1)⁺ ion peaks are not presented].

[†]4-Pentamethylene.

atom. When substituents of different lengths are present in the β position, preferable detachment of the larger of them is observed.

Peaks of ions with m/e 59 and 60, which contain a sulfur atom and are intense in the mass spectrum of 2-aminothiazoline [3], have low intensities in the mass spectra of substituted thiazolines. When there is an N₃-CH₃ group present, one observes an intense peak with m/e 114 in the mass spectrum; a less intense peak with m/e 100 (99) is observed in the spectra of compounds that do not contain a methyl group in this position, and they are of low intensity (2-3%) in the mass spectra of benzyl and benzoyl derivatives, possibly in connection with the fact that the character of the fragmentation in these compounds differs markedly from the general pattern.

Benzyl and benzoyl substituents attached to the exocyclic nitrogen atom give rise to very intense peaks corresponding to the benzyl ion (m/e 91), which probably has the tropylium structure [2], or to a benzoyl ion (m/e 105), respectively, and also to ions of medium or moderate intensity at m/e 77, 51, and 50. A phenyl substituent attached to this same nitrogen atom has a considerably weaker effect on fragmentation.

The intense ion peaks formed by detachment of the substituent in the 4 position can be explained by charge localization near the N₍₃₎ atom. A comparison of the mass spectra of

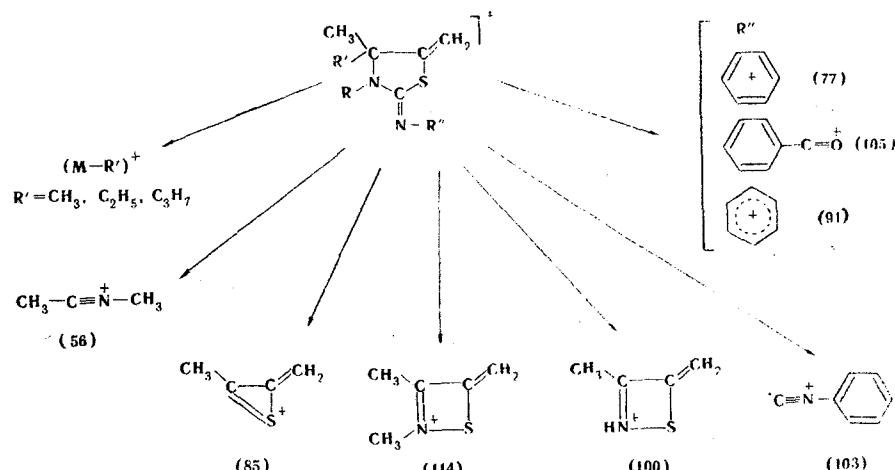


Fig. 1. Probable structures of the intense ions in the mass spectra of I-XV (the m/e values are given in parentheses).

compounds with amino and imino structures shows that the charge in both cases is apparently localized primarily on the ring nitrogen atom (peaks of ions arising during α fragmentations with close intensities). Replacement of the aliphatic substituent in the amino group by an aromatic substituent has little effect in the case of phenyl groups but has a pronounced effect in the case of benzyl, tolyl, and benzoyl substituents. In the latter three cases the charge is apparently shifted markedly to the aromatic ring, and the main peaks correspond to ions arising during fragmentation controlled from the aromatic center. Replacement of the amino group by sulfur does not appreciably affect the fragmentation (compare I and XV); the simultaneous increase in the intensity of the molecular ion is probably associated with the presence of two types of molecular ions, one of which (with charge localization on the ring nitrogen atom) was examined above, the other of which (with charge localization on the sulfur atom) is stable, disinclined to fragmentation, and makes a substantial contribution to the intensity of the M^+ ion peak.

EXPERIMENTAL

Compounds synthesized in the Laboratory of Acetylene Chemistry and described in [4-6] were used for the mass-spectrometric study. The structures and compositions of these compounds were established by chemical methods and IR and PMR spectroscopy [5].

The mass spectra were recorded with an MKh-1303 spectrometer at an inlet-cylinder heating temperature of about 100°, an ionizing voltage of 70 eV, and an accelerating voltage of 2000 V.

LITERATURE CITED

1. F. W. McLafferty, *Determination of Organic Structures by Physical Methods*, Vol. 2, New York (1962), p. 93.
2. H. Budzikiewicz, C. Djerassi, and D. Williams, *Interpretation of Mass Spectra of Organic Compounds*, Holden-Day, San Francisco (1964).
3. D. K. Klayman and G. W. A. Milue, *J. Org. Chem.*, 31, 2349 (1966).
4. I. N. Azerbaev, M. Zh. Aitkhozhaeva, and L. A. Tsoi, *Khim. Geterotsikl. Soedin.*, 471 (1972).
5. I. N. Azerbaev, M. Zh. Aitkhozhaeva, and L. A. Tsoi, in: *Chemistry of Acetylene and Technology of Calcium Carbide* [in Russian], Alma-Ata (1972), p. 154.
6. I. N. Azerbaev, L. A. Tsoi, L. A. Kalkabaeva, and N. N. Alekseeva, *Khim. Geterotsikl. Soedin.*, 199 (1974).